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Query update efficiency meanwhile, the query efficiency is competitive.
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1. Introduction

The RDF (Resource Description Framework) [1] data model, recommended by the W3C, is widely adopted to represent the relationships
in a knowledge base. For the past few years, a large amount of relationships (facts) have been extracted and transformed into RDF triples for
further use. For example, millions of relationships were extracted mainly from Wikipedia [2] to form DBPedia [3]; relationships derived from
Wikipedia, WordNet [4] and GeoNames [5] form the knowledge base YAGO2 [6,7]. Additionally, RDF enables merging and sharing across
different applications. The Linking Open Data Project [8] collects various open datasets and establishes interlink among them, which enables
users to easily navigate among the datasets. With the many efforts conducted in extracting relationships over the Internet, storing and
querying these relationships, represented by the RDF triples, have attracted increasing research interests.

Current research on large-scale RDF storage system mainly focuses on query efficiency of the system but considers little on
incremental update, which is essentially required by the increasing size of knowledge bases. Usually, building a modern knowledge
base is a continuous process. Suppose an international enterprise establishes its own knowledge base according to the current
information about employees, products, etc. The information will change everyday due to new employees on board, product
release, and so on. These changes require efficient incremental update strategy of the knowledge base. Moreover, take the YAGO2
project for example. Currently, YAGO2 includes millions of entities and relationships extracted from Wikipedia. As time goes on,
many new pages will be added into Wikipedia and new RDF triples will be extracted from the new pages. Then, an incremental
update operation is required to load the newly extracted triples into the existing knowledge base.

Currently the existing RDF data storage systems can be divided into two types. The first type relies on the underlying relational
database system and stores all triples in it with specific form. When executing an RDF query, the query is first converted to SQL
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automatically or manually, then the SQL query is used for querying the results from DBMS. This kind of RDF storage system
naturally achieves the ability of incremental update by the underlying database system. However, the efficiency of incremental
update is not good for most of the systems. The other type of RDF storage systems establishes their own storage and index
architecture and directly queries data using RDF query languages. Most of the previous work takes query efficiency as the most
important criteria for optimization and does not take much consideration on incremental update. Recently, SW-Store [9] supports
incremental update in their system but performance is not reported. gStore [10] and RDF-3X [11-14] take incremental update as a
feature in their system and their incremental update performance has also been evaluated.

Therefore, considering the dynamic nature of the built knowledge base, a well-designed RDF storage system is extremely
needed for fast incremental update and querying of RDF triples. Differently from previous work, we recently proposed a new RDF
storage system AWETO (abbr. for a hAsh-based tWo-tiEr rdf sTOrage system) with new index architecture and query execution
engine which considers the efficiency of both querying and incremental update and optimizes the architecture for incremental
update. A poster paper has depicted its basic ideas [15]. Now, we give a complete and detailed description of AWETO. In AWETO, a
hash-based string-ID mapping strategy is firstly developed which maps the string representation of triples to their ID represen-
tation in a hash manner. Secondly, instead of creating big clustered B+ tree indices for all triples, we group the triples according
to different atoms and different roles (subject, predicate or object) of atoms to create a two-tier index. The above two designs of
the index architecture benefits the incremental update procedure, in the meantime the query performance is also competitive.
Due to our new index architecture, new query execution engine is developed for fast access of our index.

We summarize the contributions of our work as follows:

* To our best knowledge this is the first work to emphasize and optimize the incremental update feature of RDF storage systems
to address the dynamic nature of knowledge bases.

* A hash-based string-ID mapping strategy and a two-tier triple index architecture are designed and developed in our system,
which help achieve high incremental update rate. Incorporating with our well-designed query execution engine, our system
also achieves high query efficiency.

 Systematic experimental study over two large-scale datasets was conducted to compare our system with other three open
source state-of-the-art RDF storage systems. Our system achieves the best incremental update efficiency meanwhile, the query
efficiency is very competitive.

The remainder of this paper is organized as follows. In Section 2, we introduce RDF and SPARQL. Our hash-based string-ID
mapping strategy is introduced in Section 3. Triple index is discussed in Section 4. Then we introduce the query execution engine
of our system in Section 5. The overall system is evaluated in Section 6. Related work will be discussed in Section 7, and we
conclude the paper in Section 8.

2. Preliminaries

In this section, we briefly introduce the RDF data model and SPARQL query language which are widely used in Semantic Web.

RDF data model is used for representing resources and relationships between resources in Semantic Web. Its intention is to
provide a mechanism to describe the resources in the Internet, which makes the resources understood by computer in a semantic
manner. RDF provides a simple data model to represent resources and relationships between pairs of resources. When all the
people follow such model, it is much easier for sharing information among multiple applications.

In RDF data model, we call an entity a resource. In order to describe relationships between pairs of resources, RDF introduces the
concept of property. A resource can have multiple properties, and properties have values. Take the fact “Alan Turing was born on
23th June, 1912” for example. In order to represent the relationship “born on” between “Alan Turing” and “23th June, 1912”, we can
define a property “<bornOnDate>" and such relationship can be represented by (<Alan_Turing>, <bornOnDate>, “1912-06-23").

We call such triple a statement. The resource to be stated is called subject, the property in the relationship is called predicate and
the value of the property is called object. Thus, differently from the traditional entity-relationship model, in RDF data model, data
are represented as (subject, predicate, object) triples. We call each role in a triple an atom. Each triple represents a relationship
between subject and object, and the type of the relationship is represented by predicate. In most cases, subject is a resource. In
RDF, we use URI reference to uniquely represent a resource. Predicate is also a resource. Generally, object can be either a literal or
resource. Literal is not a resource; it is a string value (e.g., “1912-06-23").

Following are some triples related to Alan Turing':

(<Alan_Turing>, <bornInLocation>, <London>)
(<Alan_Turing>, <bornOnDate>, “1912-06-23")
(<Alan_Turing>, <diedInLocation>, <Wilmslow>)
(<Alan_Turing>, <diedOnDate>, “1954-06-07")
(<Alan_Turing>, <hasWebsite>, <http://www.alanturing.net>)
(<Alan_Turing>, <isCalled>, “Alan M. Turing”).

1 The full URI is omitted for simple presentation.
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There is also a special kind of subject (object) in RDF, which is called blank node. Blank node is an anonymous resource. In
general, we define a resource by its URI reference; however some subjects (objects) are only used to link up two relationships and
we do not care about their URI references. In such situation, blank nodes are used to represent the anonymous subjects (objects).

RDF data can be seen as a large directed graph where subjects and objects are represented as nodes and predicates as directed
edges. The SPARQL (SPARQL Protocol and RDF Query Language) Query Language [16] is used for expressing queries of RDF data.
Its basic idea is graph pattern match. Now we briefly introduce some important concepts in SPARQL. A string beginning with a
question mark is called a variable. A Simple Access Pattern (SAP) is a triple where zero or more atoms are replaced by variables. For
instance, the following SAP can be used to query all the resources who were born in London: (?p, <borninLocation>, <London>).

Here ?p is a variable. For each triple that satisfies the pattern, its value of the subject is called a binding of the variable ?p. SAP
can only handle simple queries, for complicated ones, Basic Graph Pattern (BGP) is introduced. A basic graph pattern is a
conjunction of one or more SAPs. For example:

?p <borninLocation> <London>.
?p <diedInLocation> <Wilmslow>.

In the above example, variable ?p appears in two SAPs, which means the two SAPs are conjunct via variable ?p. Therefore, the
above BGP queries resources who were born in London and died in Wilmslow. SPARQL query is based on BGP. In SPARQL, the
SELECT clause identifies the variables that appear in the query results, and the WHERE clause provides the BGP to match against
the data graph. If we rewrite the above query with SPARQL, it will be:

SELECT ?p WHERE {
?p <borninLocation> <London>.
?p <diedInLocation> <Wilmslow>.}

3. String-ID mapping approach

Before the creation of the ID-based triple index, we convert the triples to their ID representation. Most of the RDF storage
systems do the transformation because it decreases the index size and improves query efficiency. This section describes the
proposed String-ID mapping approach of AWETO.

String-ID mapping of an RDF storage system provides the following two functionalities:

« String-to-ID mapping: Given a SPARQL query, it transforms the string representation of atoms in the SPARQL query into their ID
representation. Furthermore, while performing incremental update, each string in the triples will be looked up in the string-ID
mapping to test if the string has already been assigned an ID.2

* ID-to-string mapping: Given the result of a query generated by the query execution engine, it transforms the ID representation of
atoms into their string representation.

Typically, two kinds of string-ID mapping approaches are adopted in the current RDF storage systems.

The first approach is a simple sequential approach which is adopted in many RDF storage systems. The system sequentially
assigns a new ID when each new string appears. Two tables are established in disk, namely, string-to-ID mapping table and
ID-to-string mapping table (or database table with indices built on both the ID column and string column), to provide the above
two functionalities. In the incremental update phase, the system will look up each string in the input data to generate ID-based
triples. This approach will cause vast disk access because each string in the input data needs to be looked up in the string-to-ID
mapping table, which causes performance degradation.

The second approach is the hash-based approach, adopted by Oracle [17] and 3store [18]. In this approach, each string is hashed by
a specific hash function and a database table is used for storing the mapping. We also adopt hash-based approach in our system;
however it is different from that introduced in [17] and [ 18]. We use an in-disk ID-to-string mapping table and an in-memory conflict
map rather than single relational database table to efficiently resolve the string-ID mapping. With the in-memory conflict map, our
approach can efficiently resolve the string-ID mapping in a fast and bulk manner, which cannot be accomplished in previous work.

Before we introduce our string-ID mapping approach, we first define conflict string:

Definition 1. Conflict string

Given a string s and a hash function h(s) which maps a string to an ID, we call string s a conflict string if there exists another
string s’ # s that has already been assigned the ID h(s).

We establish an in-memory hash table which maps a string to an integer to store all the conflict strings with their ID
representation. The table is called conflict map. Next, we will introduce how the conflict map is used for efficient string-ID mapping
in both initial bulk load and incremental update.

2 For convenient presentation, we use the word “string” to indicate the string representation of an atom and “ID” to indicate the ID representation of an atom in
the following sections.
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3.1. String-ID mapping in initial bulk load

During initial bulk load, we generate a temporary file which contains all different strings with their IDs and the file is sorted by
IDs. The IDs in the file are generated by the hash lookup algorithm [19]. It is reported in [17] that the hash lookup algorithm
performs the best among several state-of-the-art hash algorithms considering both hashing speed and hashing quality. Our
proposed algorithm for resolving string-ID mapping in initial bulk load is depicted in Algorithm 1.

Algorithm 1: Resolving string-ID mapping in initial bulk load

Input: The temporary file file that contains all different strings sorted
by IDs;
The ID-to-string mapping table itsTable;
The conflict map con flictMap.

initialize itsTable;

initialize con flict M ap;

lastID «— —1;

foreach (id, string) pair isPair € file do

if isPair.id # last] D then

L insert isPair into itsTable;

N e oA W N R

lastI D « isPair.id;

else
L insert isPair into con flictMap;

© ®

10 foreach (id, string) pair isPair € conflictMap do

11 repeat

12 ‘ generate a new ID newlID for string;
13 until itsTable does not contain newlD ;
14 insert (newlD, string) into itsTable;

15 | replace the ID field of isPair in conflictMap to newlID;

For each (id, string) pair in the temporary file, we determine whether string is a conflict string by judging if id in the previous (id,
string) pair equals to that in this pair (line 5). If string is not a conflict one, we add the pair into itsTable (line 6), otherwise, the pair is
added to conflictMap for further operations (line 9). After the scan of the file, for each (id, string) pair in conflictMap, we generate a new
ID for each pair and then modify the conflictMap to ensure there does not exist any different two strings with the same ID (lines 10-15).

Notice that, in line 13, we need to look up the itsTable given a specific ID which may cause 1/0 operation. We add a Bloom filter
[20] above the itsTable. Bloom filter is a space-efficient data structure and is used to test whether an element is contained in a set
with a probabilistic way. It allows false positives but does not allow false negatives, i.e., in our scenario, if the containment test of
the bloom filter for a specific ID returns “contain”, we must double-check if the ID really exists, however if the test returns “not
contain”, we can safely conclude that the ID is not contained by itsTable which saves much I/O time. In the current implementation
of AWETO, we use one hash function h(x) = x mod m, where m is the length of the bit array in the Bloom filter.

Now we give an example to illustrate our string-ID mapping approach. Assume we need to insert the following 15 triples into AWETO:

(<Alan_Turing>, <type>, <Person>)

(<Alan_Turing>, <isCalled>, “Alan M. Turing”)
(<Alan_Turing>, <isCalled>, “Alanus Mathison Turing”)
(<Alan_Turing>, <isCalled>, “Alan Turing”)

(<Alan_Turing>, <hasGivenName>, “Alan”)

(<Alan_Turing>, <hasFamilyName>, “Turing”)
(<Alan_Turing>, <graduatedFrom>, <Princeton_University>)
(<Alan_Turing>, <hasAcademicAdvisor>, <Alonzo_Church>)
(<Princeton_University>, <type>, <Universitiy)
(<Princeton_University>, <isCalled>, “Princeton-universiteit”)
(<Princeton_University>, <isCalled>, “Universitas Princeton”)
(<Alonzo_Church>, <type>, <Person>)
(<Alonzo_Church>, <hasGivenName>, “Alonzo”)
(<Alonzo_Church>, <hasFamilyName>, “Church”)
(<Alonzo_Church>, <isCalled>, “Alonzo Church”)

Then, we generate a temporary file containing the following information:

325139335 Princeton-universiteit
620828401 Alanus Mathison Turing
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795117782 type

922484582 Church

922484582 Alonzo_Church
975184447 graduatedFrom
1019901428 Princeton_University
1065738113 Universitas Princeton
1124849173 hasAcademicAdvisor
1273271076 Alan Turing
1330155065 Universitiy
1402263080 Alonzo Church
1439869607 Alan

1439869607 Alonzo

1801982372 Alan_Turing
1887385039 hasGivenName
1918674024 Person

1959756650 hasFamilyName
2040294948 Alan M. Turing
2108943609 isCalled

2138869059 Turing

In each line shown above, the integer is computed by hash lookup algorithm. We can easily find that Alonzo_Church is a conflict

59

string because another string Church has the same hash value with Alonzo_Church and the hash value 922484582 has already been
assigned to Church as its ID. Thus we generate a new ID 953038171 which has not been assigned to any string. For the same
reason, conflict string Alonzo is assigned a new ID 1651651253 as well. After scanning the temporary file, the ID-to-string mapping

table and the conflict map are shown in Fig. 1.

325139335 Princeton-universiteit

620828401 Alanus Mathison Turing

795117782 | type

922484582 | Church 1 c
953038171 | Alonzo_Church I D-to-§tr|ng
975184447 ‘ graduatedFrom Hepplng table
1019901428 Princeton_University

1065738113 Universitas Princeton

1124849173 hasAcademicAdvisor

1273271076 Alan Turing

1330155065 Universitiy

1402263080 Alonzo Church .

1439869607 Alan conﬂ‘ct map
1651651253 Alonzo

1801982372 Alan_Turing

1887385039 hasGivenName

1918674024 Person

1959756650 hasFamilyName [ key value
2040294948 Alan M. Turing Alonzo_Church 953038171
2108943609 isCalled Alonzo 1651651253
2138869059 Turing ) '

Fig. 1. Structure of AWETO string-ID mapping.
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In conclusion, two tasks are done during Algorithm 1:

1. All the ID-to-string mappings are written to the ID-to-string mapping table in disk.
2. All the conflict strings are assigned new IDs and inserted into both the ID-to-string mapping table and the conflict map.

The first task is to construct an in-disk ID-to-string mapping table. When an ID-to-string look up is needed (e.g., convert the
query results generated by the query execution engine into their string representation), we use this table to look up strings. In our
current implementation, we adopt the Tokyo Cabinet [21] B+ tree as the ID-to-string mapping table. The second task constructs
an in-memory conflict map which contains all the strings and their corresponding IDs that are not generated normally by the hash
function h(s). Even for large RDF data, the number of conflict strings is small when a good hash function is adopted. According to
[17], for UniProt [22] dataset with more than 33 million different strings, the authors adopted a 63-bit hash lookup algorithm and
got no collisions. In our implementation, we adopt a 31-bit hash lookup algorithm. The reason to use shorter bits to represent IDs
is that we consider both the conflict number and the compression rate. Our compression (detailed in Section 4.1) is based on the
difference values between adjacent triples. Too large ID range will cause degradation of compression rate because it will enlarge
the difference values between adjacent ID values. With 31-bit length, the number of conflict strings is 58,219 for YAGO2 and the
total number of different strings in YAGO2 is 15,820,985. For LUBM, the number of conflict strings is 62,485 while the total number
is 16,439,335.% Thus, the number of conflict strings in these large-scale datasets is small enough to locate in memory.

For the sequential string-ID mapping approach, a string-to-ID mapping table must exist in disk to get the ID of a specific string.
However, in our approach, the in-disk string-to-ID mapping table is not essential which saves a lot of disk space. When we need to
convert a string s into its ID representation, we first look up s in the conflict map. If the conflict map contains s, we naturally get the
ID, otherwise, h(s) is computed. If we are sure that s exists in the string-ID mapping, h(s) is naturally the ID representation for s. It
can be used for generating ID-based triples from the source RDF data file after the string-ID mapping. If we are not sure of the
existence of s, h(s) is looked up in the ID-to-string mapping table. If we get exactly the string s by the look up, we can conclude
that h(s) is the ID representation of s, otherwise, we know that s does not exist in the string-ID mapping.

3.2. String-ID mapping in incremental update

Firstly, we discuss incremental insertion. Differently from initial bulk load, during incremental insertion, the conflict strings
cannot be retrieved by the temporary file mentioned in the preceding section because there have already existed many strings in
the string-ID mapping. Thus, different strategies are adopted. We generate a temporary file which only contains all different
strings of the new triples to be inserted, sorted by h(s). Then we perform a single scan of the file to finish the resolution of
string-ID mapping. Our algorithm for resolving string-ID mapping in incremental insertion is depicted in Algorithm 2.

Algorithm 2: Resolving string-ID mapping in incremental insertion

Input: The temporary file file that contains all different strings, sorted
by h(s);
The ID-to-string mapping table itsTable;
The conflict map con flict M ap.
1 foreach string € file do
2 if conflictMap does not contains string then
3 stringFromMap — itsTable.get(h(string));
4 if stringFromMap = null then
5 L insert (h(string), string) into itsTable;
6 else if string # stringFromMap then
7 repeat
8 | generate a new ID newlID for string;
9 until itsTable does not contain newlD ;
10 insert (newlD, string) into itsTable;
11 insert (newlD, string) into con flictMap;

Here, h(s) is the same hash function as in initial bulk load phase. For each string in the file, the algorithm first checks if the
string is contained by the conflict map (line 2). If it is, nothing will be done for the string because it has already been assigned an
ID. Otherwise, as described in line 3, we get the stringFromMap from itsTable given the hash value of the string h(string). If h(string)
cannot be found in itsTable, which means it is a new string but not a conflict string (line 4), we add it into itsTable(line 5). If
h(string) is found from itsTable, a double-check is needed because a different string may be assigned the ID h(string) before, which
indicates string is a conflict string. Here in line 6, we check if string equals to stringFromMap. If they do, nothing will be done
because the string has already been assigned h(string) as ID, otherwise, in lines 7-9, a new ID is assigned and the (newlID, string)
mapping will be added into both itsTable and conflictMap (line 10 and 11). Note that, in lines 3 and 9, we need to look up the
itsTable given a specific ID. The same as initial bulk load, we also adopt the Bloom filter to reduce I/O operations.

3 For detailed description of the two datasets, see Section 6.2.
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After resolving the string-ID mapping using Algorithms 1 or 2, we need to transform the triples in the input data from string
representation to ID representation. After that, we can use the ID-based triples to generate the triple index. We need to rescan the
input data to generate the ID-based triples. Because all the strings in the input data are contained by the string-ID mapping, which
is accomplished by Algorithms 1 or 2, no I/O operation for looking up the string-ID mapping is needed. Thus, the generation of the
ID-based triples can be very fast.

Compared with the sequential ID assignment approach, which looks up each string in the new triples in string-ID mapping,
our approach achieves high efficiency for the following two reasons. Firstly, when resolving string-ID mapping, by generating the
temporary file, our approach looks up each different string in the string-ID mapping rather than all the strings in the input data,
and the number of different strings is much smaller than that of all the strings, less I/O operation is required to look up the strings.
In YAGO2 dataset, there are 32,393,226 different triples, thus it contains 97,179,678 strings. However, there are only 15,820,985
different strings in the dataset, which is about 16.3% of all the strings. Similarly, in LUBM dataset, there are 66,751,196 different
triples, thus it contains 200,253,588 strings. However, there are only 16,439,335 different strings in the dataset, which is about
8.2% of all the strings. Furthermore, Bloom filter is adopted which also decreases the number of I/O operations. Secondly, when
generating ID-based triples, each string is looked up extremely fast because no I/O operation for looking up string-ID mapping is
needed. We only need to perform look ups in the in-memory conflict map and calculate the hash values of the strings.

For incremental deletion of the triples, currently, state-of-the-art RDF storage systems do not consider the deletion of strings
in the string-ID mapping. RDF storage system is used as the serialization layer to store knowledge in semantic web. In most cases,
knowledge frequently increases but rarely decreases. For instance, new knowledge will be added to Wikipedia everyday, but
existing knowledge in Wikipedia is rarely removed. Thus, the strings in the string-ID mapping in an RDF storage system are rarely
deleted. It will cause heavy maintenance burden if deletion is considered in string-ID mapping.

Thus, like other RDF storage systems, we do not consider the deletion of strings in the string-ID mapping either. When
performing incremental deletion, for each string s in a triple to be deleted, if we cannot find it in the string-ID mapping, it indicates
that the triple is not in the knowledge base. Therefore, we can ignore the triple and continue to the next one.

4. Triple index

After mapping the strings to their ID representation, we use ID-based triples to build our triple index. In this section, we
discuss our two-tier triple index architecture. Overview of the triple index is introduced in Section 4.1, then we introduce the
incremental update of triple index in Section 4.2.

4.1. Overview of triple index

Traditionally, several big clustered B+ trees are used to store different orders of all triples (SPO, PSO, POS, OPS, etc.). During
the incremental update procedure, large number of triples with their ID form will be inserted into (deleted from) the B+ trees
which causes heavy maintenance burden of B+ trees. If the number of insertions (deletions) could be decreased, it could improve
the performance of incremental update. Based on this consideration, differently from previous work, we adopt a new two-tier
index architecture. The upper tier is called atom position index (AP index) which is actually a small B+ tree index, and the lower
tier is called binary tuple index (BT index) which adopts our own index strategy that can be efficiently maintained.

Our triple index consists of four different index orders: S-PO, P-SO, P-OS, and O-PS. The basic idea is to separate a triple into a single
atom and a two-atom tuple, which is called binary tuple. Take P-OS order for example, the triple (subject, predicate, object) is separated
into an atom predicate and a binary tuple (object, subject). The separated atom is stored in AP index with some information related to it. The
binary tuples associated with each separated atom are sorted and stored in BT index. Next we will introduce AP index and BT index in detail.

The AP index is a key-value store in disk which is implemented by B + tree. For each atom that appears in each role of a triple,
we add a data item into AP index. The key of the data item is a 9-byte (flag, atom) pair (for simplicity, we call it FA pair). The first
byte is a flag byte, which indicates not only the role of the atom, but also the order of the associated binary tuples in BT index. In the
current implementation, we define O for P-SO order (the role is predicate, and the order of binary tuples is sorting by subject first,
then object), 1 for P-OS order, 2 for O-PS order, and 3 for S-PO order. The following 8 bytes after the flag byte contain the ID
representation of the atom. The value field of the data item contains all the (position, length) pairs which indicate where the binary
tuples associated with the FA pair are stored in BT index.

The BT index is a file located in disk. We divide the disk space into blocks. Block is the basic unit for allocating disk space in BT
index. Recall that position and length information of a specific FA pair are stored in AP index. Here, position is the offset in BT index
file, and length is the length of the indexed data measured in block.

Here, we use an example to demonstrate our two-tier triple index. Recall the example in Section 3.1. After string-ID mapping,
the triples are converted into ID representation and we sort the triples by SPO order:

(953038171, 795117782, 1918674024)
(953038171, 1887385039, 1651651253)
(953038171, 1959756650, 922484582)
(953038171, 2108943609, 1402263080)
(1019901428, 795117782, 1330155065)
(1019901428, 2108943609, 325139335)
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(1019901428, 2108943609, 1065738113)
(1801982372, 795117782, 1918674024)
(1801982372, 975184447, 1019901428)
(1801982372, 1124849173, 953038171)
(1801982372, 1887385039, 1439869607
(1801982372, 1959756650, 2138869059)
(1801982372, 2108943609, 620828401)
(1801982372, 2108943609, 1273271076)
(1801982372, 2108943609, 2040294948).

To simplify the demonstration, we suppose one block contains two triples (actually, there are more triples in one block). For
the first subject 953038171, we have 4 triples, thus, 2 blocks need to be allocated to store them. Suppose we allocate block 0 and
block 1. We firstly add a data item with key (3, 953038171) and value (0, 2) into AP index, then write (795117782, 1918674024),
(1887385039, 1651651253), (1959756650, 922484582), (2108943609, 1402263080) into BT index beginning with offset O
Similarly, triples with subject 1019901428 and 1801982372 will be also written to AP index and BT index in the same way. After
this, the structure of the two-tier triple index is shown in Fig. 2.

The establishment of the two-tier triple index for the other three orders (P-SO, P-0S, O-PS) is similar to that for S-PO order. In
this example, 15 triples are inserted into the triple index. For the traditional B + tree-based triple index, 15 keys will be inserted
into the B+ tree. However, in our implementation, only 3 AP index insertion operations are needed, which decreases the
maintenance burden of the B+ tree. Furthermore, BT index can be written directly which is also efficient. Thus, compared with the
traditional triple index structure, our two-tier triple index gains better performance.

Now, we have described the basic structure of the two-tier triple index. Next, we will look into the triple index deeply.

For a specific FA pair p, the binary tuples associated with it will be stored in several blocks. The blocks can be either continuous or
incontinuous. When initial bulk load, the system will allocate continuous blocks for the binary tuples associated with p to ensure that the
binary tuples associated with the same FA pair being stored in continuous disk space. After deletion operations are performed, there will
exist several unused blocks in the middle of BT index. At this time, the space allocation algorithm has to give considerations to both data
locality and external fragmentation while inserting new binary tuples. It should make the choice between allocating continuous blocks
(which benefits data locality but causes external fragmentation) and allocating several incontinuous blocks (which breaks the data
locality but does not cause external fragmentation). When the rate of fragmentation in BT index exceeds a threshold, a reorganization
operation is required to reorganize the BT index to locate blocks associated with the same FA pair in a continuous disk space.

The length of a block should be small, especially for the orders of S-PO and O-PS, because binary tuples associated with different
FA pairs use different blocks. In general, the number of different subjects and objects in an RDF dataset is large and the number of
triples with the same subject or object is usually small, therefore, if block size is big, too much internal fragmentation will be made
which causes the waste of disk space. Note that, due to the small size of block, it is only used for allocating disk space, not used for
reading and writing data in disk. In our system implementation, the memory mapped file technique is used, which accesses disk
with operating system page as the basic unit.

AP index | BT index
(3,953038171) 0,2)
(3,1019901428)  (2,2)
(3,1801982372) (4,4) -

/
/

block value

795117782, 1918674024, 1887385039, 1651651253
| 1959756650, 922484582, 2108943609, 1402263080

| 795117782,1330155065, 2108943609, 325139335
2108943609, 1065738113

| 795117782,1918674024,975184447, 1019901428

| 1124849173,953038171, 1887385039, 1439869607

| 1959756650, 2138869059, 2108943609, 620828401

; 2108943609, 1273271076, 2108943609, 2040294948

PR T B ST I O N Y

Fig. 2. Structure of AWETO triple index.
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Although blocks associated with a specific FA pair may be incontinuous in disk, for each FA pair, the blocks associated with it can
be seen as logically continuous, that is, for a given FA pair p, although the blocks associated with p may be incontinuous in disk,
when we put the blocks together, they represent all the associated binary tuples for p.

Because the size of block is small, we group each n logically continuous blocks into a segment, where n is called segment size. To
support fast query execution, for each FA pair, except storing (position, length) pair, we also store the range information of the
binary tuples for each segment in the value field of the FA pair, which is used by our query execution engine (see Section 5).
Segment is treated as the basic unit of operating on the indexed data in BT index, including data compression/decompression, atom
filtering (discussed in Section 5) and U-SIP pruning® [12]. For compression and decompression, we adopt segment as the basic unit
because the compression rate will drop if too small compression unit such as block is used. For U-SIP pruning, if block is used as
basic unit, significant CPU overhead will be caused due to the check for pruning is too often. Thus, introducing the concept of
segment benefits both the data compression and U-SIP pruning.

Compression is needed for both the AP index and BT index. There is a tradeoff between the space savings and CPU consumption
for decompression of compressed items. Too aggressive compression will degrade the query performance since decompression
will dominate most of the time during reading and decompressing [11,23]. For AP index, we adopt the famous variable-byte coding
[24] for the value field of the data items in AP index. For BT index, instead of storing the original binary tuples, for each segment,
we compute the difference values between adjacent binary tuples and store the difference values. We use 32-bit integer for all
predicates and 64-bit integer for subjects and objects and treat a 64-bit integer as two 32-bit integers in our current
implementation for further use. For a (predicate, object) or (predicate, subject) binary tuple, there are three 32-bit integers for each
binary tuple. We can adopt the compression scheme of [11] which is also a three-32-bit-integer compression scheme. For a (subject,
object) or (object, subject) binary tuple, we adopt our own differential compression scheme. Also note that, we store the length of
the compressed data at the beginning of the segment such that the decompressor can know how many bytes to be decompressed.

Our compression scheme is similar with [11]. In a (subject, object) or (object, subject) binary tuple, four 32-bit integers
represent a binary tuple. Thus, we slightly modify the compression scheme of [11] to support four-32-bit-integer compression. We
also add header bytes before each binary tuple and write the non-zero tails of the integers in the tuple. Our binary tuple consists of
four integers; one header byte is not sufficient to represent different compression conditions (totally 340 different conditions).
And we think two header bytes for each binary tuple is a waste of space. Alternatively, we add a binary tuple header for each binary
tuple and group four binary tuples into a group to generate a group header. The group header and the four binary tuple headers guide
the decompressor on how to decompress the four binary tuples.

According to our test, for AP index, 20.7% of disk space can be reduced when adopting the above compression scheme for both
of the datasets YAGO2 and LUBM, which means 20.7% of I/0 operation can be reduced in average while performing querying and
incremental update in YAGO2 and LUBM . For BT index, 42.8% and 51.3% of disk space can be reduced for the datasets YAGO2 and
LUBM respectively. Thus, by introducing compression into AWETO, lots of I/O time can be saved.

4.2. Incremental update of triple index

In each of the ID-based RDF triples to be inserted or deleted, we add a flag f. f equaling to ‘i’/‘d’ indicates the triple should be
inserted into/deleted from the triple index. We sort the new triples into four different orders, i.e., SPO, PSO, POS and OPS to get the
FA pairs and the sorted binary tuples associated with them. For each of the FA pairs and the associated binary tuples bt., we get
the binary tuples bt,q which have the same role and atom with bt,.,, in the triple index. Then we perform a merge operation to
merge bt,y and bt,e,. While performing the merge operation, all the triples with f = ‘i’ will be inserted into bt,q, and all the
triples with f = ‘d’ will be removed from bt, 4. After that, we write the merged data into disk using the space that has already been
allocated to bt,4. If the space is not sufficient, new space will be allocated. If the old AP index does not contain the new FA pair, we
directly allocate new space and write bt,,,, into disk. Finally, we update the value field of the FA pair in AP index.

Now we analyze the cost of the incremental update operation. Suppose the numbers of triples in bt,;y and bt are m and n,
respectively. Then, the cost for each sort operation is O(nlog(n)). We have four sort operations, thus the total cost for the sort
operations is O(4nlog(n)). The cost for the merge operation is O(m + n). Therefore, the overall cost of the incremental update
operation is O(4nlog(n) + m + n).

Note that, in the scenario of new triples arriving frequently and in small chunks, we will temporarily locate the new triples in
memory. When the number of triples in memory meets a certain threshold, the triples will be inserted into/deleted from the
triple index in a batch manner.

Now, we use an example to demonstrate the incremental insertion of our two-tier triple index. Recall the example in Section 4.1
and we also take SPO order for example. Assume the following two triples need to be inserted:

(1019901428, 854315478, 315487547)
(1019901428, 2108943609, 457865481).

Firstly, we look up the AP index using the key (3, 1019901428). Then we get its value (2, 2), which means the binary tuples
associated with the subject 1019901428 are stored in blocks 2 and 3. Then, we get the binary tuples from blocks 2 and 3, namely,
795117782, 1330155065, 2108943609, 325139335, 2108943609, 1065738113, and merge the binary tuples with the new ones,

4 U-SIP is a light-weight run-time method that enables index scan operator to skip reading some useless part of the index during query execution, which
improves the query execution efficiency.
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namely 854315478, 315487547, 2108943609, 457865481. After the merging, we get 795117782, 1330155065, 854315478,
315487547, 2108943609, 325139335, 2108943609, 457865481, 2108943609, 1065738113. Two blocks are not enough to store
these tuples, so we allocate the third block, block 8, then these tuples are written to blocks 2, 3 and 8. Fig. 3 shows the structure of
the triple index after the insertion.

5. Query execution

Our query execution engine executes queries in a pipelining way; query is executed by an operator tree. Each operator gets
part of data from its children and achieves its own logic. Due to our new index architecture, the index scan operator is different
from that in previous work. In our system, the index scan operator reads and decompresses data from disk by segment. As our
index contains four different orders and index scan for the four orders is similar, we take the S-PO order as an example to
illustrate the operator. There are four kinds of SAPs related to S-PO order: (s, ?p, ?0), (s, p, ?0), (s, p, 0), and (?s, ?p, ?0).

For SAPs like (s, ?p, ?0), we firstly look up the AP index using atom s, then according to the positions and lengths information
got from the value field of the AP index, the bindings for ?p and ?0 can be naturally retrieved.

For (s, p, ?0), we also look up AP index using s. Compared with (s, ?p, ?0), the difference is, among all the bindings of (s, ?p, ?0), we
must get the bindings that satisfy ?p = p. Here, we adopt an atom filter to accomplish this task. Before a new segment is read from disk,
the atom filter will judge if p belongs to the range of the segment. (The range information is located in the AP index and has already
been read to memory together with the (position, length) pairs when looking up s in AP index.) If p does not belong to the segment, we
skip reading the segment and continue to the next segment. In this way, useless segments will not be read thus eliminating redundant I/0
operations. We should note that, after we read the first and last segment, the binary tuples in these two segments may not contain only
the binding p for ?p, therefore, the binary tuples within these two segments still need to be filtered internally the segment.

Here we demonstrate an example for the atom filter. Suppose the following binary tuples are associated with subject 10 with
the order S-PO and one segment contains four tuples: {(1, 15), (1, 16), (1, 17), (1, 18)}, {(1, 19), (2, 20), (2, 21), (2, 22)},{(2, 23),
(2,24),(2,25),(2,26)},{(2,27),(2,28),(2,29), (3,9)}. Now we want to query the SAP (10, 2, ?0). Firstly, we look up the AP index
with key 0x03000000000000000A and find only the second, third and fourth segments can potentially contain binary tuples with ?
p = 2 by checking the range information. Thus all other segments can be skipped to reduce 1/0 operations (In this example, the
first segment is skipped). The second and fourth segments still need to be filtered because they may contain binary tuples not
satisfying ?p = 2, such as tuples (1, 19) and (3, 9) in this example. The segments in the middle (the third segment in this example)
do not need to be filtered because we know all the binary tuples must satisfy ?p = 2.

Similarly to (s, p, ?0), for (s, p, 0), the atom filter filters not only the ?p value but also the ?0 value.

At last, for the special case (?s, ?p, ?0), i.e., get all the triples from the RDF storage system, we get all the bindings of ?s by
performing a full scan on the keys that represent S-PO order in the AP index. Because we use B+ tree to maintain the AP index, the
keys that represent S-PO order are sorted, thus the retrieved bindings of ?s are naturally sorted, which enables merge join on ?s.
Then for each binding of ?s, the operation is the same as (s, ?p, ?0).

AP index BT index
(3,953038171) (0,2)
(3,1019901428) (2,2),(8, 1)

(3,1801982372)  (4,4)

block value
795117782,1918674024, 1887385039, 1651651253
| 1959756650, 922484582, 2108943609, 1402263080
| 795117782, 1330155065, 854315478, 315487547
| 2108943609, 325139335, 2108943609, 457865481
| 795117782,1918674024,975184447, 1019901428
| 1124849173, 953038171, 1887385039, 1439869607
| 1959756650, 2138869059, 2108943609, 620828401
| 2108943609, 1273271076, 2108943609, 2040294948
| 2108943609, 1065738113

00 N o s W N RO

Fig. 3. Structure of AWETO triple index after insertion.
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The U-SIP technique introduced in [12] is also adopted in our query execution engine. For merge join, our execution engine
gets the next value of a segment by getting the maximum value of all current variable bindings that exist in the same equivalent
class. If the next value is larger than the maximum value of the segment, which indicates the segment can be safely pruned, the
index scan operator will skip the segment and go ahead to the next one. For hash join, we build Bloom filter for each equivalent class
containing a hash join, then detect skips according to the Bloom filter. By U-SIP technique, some useless segments for joins can be
safely pruned thus improving the performance by decreasing disk I/0 time, decompression time and join time.

In order to clearly describe how the atom filter and equivalent class work when our index scan operator reads a segment, we give
a formal description in Algorithm 3. There are two input arguments in the algorithm: the atomFilter object and the equivalentClass
object. atomFilter object deals with the SAPs (ay, a,, ?v1) and (a4, a,, as). There are two methods in atomFilter object. One is prune,
which returns if the current segment can be safely pruned. It is done by checking the range information of the current segment. The
other is needinternalFiltering which returns if we need to internally filter the current segment while reading the segment. It is done
by checking if the minimum value of the data in the segment equaling to the maximum value in the segment. The equivalentClass
object is responsible for getting the next value described above. For SAPs (ay, ?vy, ?v») and (ay, ay, ?v1), equivalentClass contains the
equivalent class information on ?v; if ?v; is contained by an equivalent class. Otherwise, equivalentClass is set to null.

Inline 1 to line 19, we try to skip useless segments which is done by atom filtering and equivalent class. In line 2, we get the information
of the next segment to be read (segmentinformation). segmentinformation contains the positions, lengths and range information of the
segment. If there is no longer the next segment, we have finished reading all the segments (lines 3 and 4). Otherwise, we first check if atom
filtering is needed (line 5). If it is, the prune method is invoked to judge if the current segment can be filtered (line 6). If it can, we continue
to the next segment (lines 7 and 8). Then we check if equivalent class can be used (line 9). If it can, there are two conditions. One condition
is for the SAP (ay, ?v4, ?v,). In this condition, atomFilter is null (line 10). We get the next value by the minimum value of ?v; in the segment
(line 12). If the next value is larger than the maximum value of ?v; in the segment, we can conclude that the current segment is useless for
join thus we continue to the next segment (lines 13 and 14). The other condition is for the SAP (ay, ay, ?v1). In this condition, we need to
check if the current segment needs to be filtered internally (line 15). If it does not, we know that all the binary tuples in the segment match
the SAP (ay, a, ?v1). In this way, equivalent class can be used similarly with the previous condition (lines 17-19). We should note that, if
the current segment needs to be filtered internally, which indicates not all the triples in the segment match the SAP (a;, a,, ?v,), we cannot
know the minimum and maximum value of ?v; because we only know the range information of the segment. In this way, equivalent class
cannot be used for the segment. After the filtering and pruning of useless segment, in lines 20-23, we read the binary tuples in the segment.

Algorithm 3: Algorithm when the index scan operator reads a segment

Input: The atomFilter object
The equivalentClass object.

while true do
segmentInformation < getNextSegmentIn formation();
if segmentInformation = null then

L return false;
if atomFilter # null then
prune = atomFilter.prune(segmentInformation);
if prune = true then

L continue;

[N

® N o «

9 if equivalentClass # null then
10 if atomFilter = null then
11 /*Here minV aluel and maxValuel represent the minimum
value and maximum value of the first values in the binary
tuples in the segment.*/

12 nexrt =
equivalentClass.next(segmentInformation.minV aluel);

13 if next > segmentinformation.maxValuel then

14 | continue;

15 else if not(atomFilter.needInternal Filtering()) then

16 /*Here minV alue2 and maxV alue2 represent the minimum

value and maximum value of the second values in the binary
tuples in the segment.*/

17 next =
equivalentClass.next(segmentInformation.minV alue2);

18 if next > segmentIn formation.maxV alue2 then

19 L continue;

20 if atomFilter = null or not(atomFilter.needInternal Filtering()) then
21 L read the data in the segment;

22 else
23 L read the data in the segment and do the internal filtering;

24 return true;
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Table 1
Runtime and knowledge base size for initial bulk load.
YAGO2 LUBM
Time Size Time Size
AWETO 20 min and 24 s 29 GB 42 min and 31 s 4.1 GB
RDF-3X 23 min and 25 s 23 GB 74 min and 9 s 4.6 GB
MonetDB 21 min and 48 s 14 GB 64 min and 12 s 2.6 GB
PostgreSQL 44 min and 15 s 6.4 GB 107 min and 25 s 11.9 GB
OWLIM-SE 57 min and 2 s 33GB 530 min and 23 s 49 GB

The B+ tree look up operation in AP index is an efficient operation. The atom filter is also highly efficient because it filters in the
segment level and skips many useless segments. Thus, for all the four patterns, our index scan operator can achieve high efficiency.

6. Experimental evaluation
6.1. General setup

In order to evaluate the performance of our system, we compared both the query runtime and incremental update efficiency to
other systems. All the experiments were done on an IBM System x3650 server with eight 1.66 GHz CPU cores and 20 GB memory.
In the server, we ran a 64-bit Linux with the kernel version of 2.6.18. In all the tests, the block size is set to 32 bytes. Segment size is
set to 32 for YAGO2 and 512 for LUBM.

The RDF-3X system introduced in [11-14] is the primary competitor of our system. We used RDF-3X 0.3.6 to run the tests.
Although the authors of gStore reported the performance of gStore is better than RDF-3X in [10], we cannot get the code or
executable file of gStore. We contacted the authors of gStore, but did not get any response. Furthermore, all the systems in our
evaluation are disk-based. However, gStore relies on both the tree index which is located in memory and the adjacency list in disk.
The tree index will occupy large amount of memory when the dataset is large. Thus, gStore is not our competitor. The second
baseline system is column-store-based vertical partitioning approach introduced in [25,9], which has gained the best performance
among all other approaches based on database. Differently from [25,9], we used MonetDB [26] instead of C-Store [27] as the
underlying column store. Because C-Store was no longer maintained and the query execution engine was not fully implemented,
the authors of C-Store suggested using MonetDB instead. The third baseline is the PostgreSQL [28] database system acting as triple
store. For the string-ID mapping, we built indices on both IDs and strings, which made it support both ID-to-string query and
string-to-ID query. And for the triple table, the indices were built with the orders SPO, PSO and POS which belong to the
Sesame-style storage system [29]. Other systems like Jena2 [30,31], YARS2 [32,33] and Sesame [29,34] were evaluated by [11] and
suffered scalability issues with large datasets. Thus we have omitted these systems for comparison. In addition, although BitMat
[35] is a recent work, it optimizes for queries with low selectivity and sacrifices much on the performance of highly-selective
queries, which is different from the purpose of our work. Thus, we exclude BitMat for comparison. Furthermore, we also compared
our system with a commercial RDF storage system, OWLIM-SE [36].

6.2. Query evaluation

For query evaluation, we performed both the cold-cache test and warm-cache test. In cold-cache test, all the file system caches
were dropped by the /proc/sys/vm/drop_caches kernel interface before the start of each run. All the queries were ran ten times

Table 2
Query run-times (in seconds) for YAGO2 dataset.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Geom. mean

Cold caches

AWETO 0.709 0.568 0.402 0.624 0.217 0416 0.426 0.453
RDF-3X 0.464 0.370 0.316 0.396 0.171 0.341 0.322 0.327
MonetDB 18.963 9.567 9.325 15.711 16.486 12.115 10.986 12.865
PostgreSQL 33.368 0.660 3.062 15.854 4.650 2.660 9.167 5324
OWLIM-SE 2.052 0.353 0.448 4.768 3.896 0.901 0.236 1.036
Warm caches

AWETO 0.118 0.104 0.043 0.132 0.023 0.028 0.061 0.060
RDF-3X 0.141 0.131 0.048 0.149 0.029 0.062 0.053 0.074
MonetDB 5.048 0.877 1.338 1.389 2.266 2.251 1.552 1.816
PostgreSQL 1.266 0.052 0.051 0.659 0.281 0.136 0.056 0.174

OWLIM-SE 0.425 0.023 0.035 2.780 1.938 0.065 0.008 0.138
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Table 3
Query run-times (in seconds) for LUBM dataset.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Geom. mean

Cold caches

AWETO 0.163 0.171 0.367 0.330 0.331 2227 0.296 0.357
RDF-3X 0.107 0.101 0.229 0.171 0.281 1.221 0.144 0.215
MonetDB 14.920 15.040 16.532 17.936 21.717 23.019 15.299 17.531
PostgreSQL 0.335 0.431 1.197 11.117 1.747 109.434 3.307 2.758
OWLIM-SE 0.065 0.065 0.101 556.708 0.111 0.837 0.119 0.428
Warm caches

AWETO 0.005 0.006 0.022 0.120 0.033 1.108 0.042 0.038
RDF-3X 0.002 0.003 0.008 0.080 0.103 0.665 0.025 0.025
MonetDB 1.377 1.364 2.257 4.596 3.514 3.440 1.964 2.403
PostgreSQL 0.021 0.048 0.078 9.404 0.077 0.678 0.049 0.152
OWLIM-SE 0.006 0.006 0.018 553.988 0.010 0.237 0.004 0.062

to avoid the influence of other OS activities and we reported the best result. Before the query test, we load all the triples in YAGO2
and LUBM (Notation 3 (N3) [37] format) into the five systems. The load time and database size are illustrated in Table 1.

For the first experiment we used the YAGO2 [7] dataset (the core version, N3 format), which is a huge semantic knowledge
base, derived from Wikipedia, WordNet and GeoNames. It contains 15,820,985 different strings and 32,393,226 different triples.
The previous work RDF-3X [11] uses the YAGO [6] dataset. However, the latest version of RDF-3X system cannot work well with
YAGO dataset. In addition, YAGO2 dataset is different from the original YAGO, some of the queries for YAGO will generate empty
result in YAGO?2. For the above reasons, we modified and rewrote seven queries to test the query performance of all systems with
YAGO?2 dataset. All the queries are shown in Appendix A.1.

The experimental results for YAGO2 are shown in Table 2. The same as previous work, we also use the geometric mean of query
time to measure the performance of each system. Geometric mean is often used as a workload-average measure in benchmarks
[11]. Firstly, we compare our system with RDF-3X. The RDF-3X storage system achieves the best performance in cold caches and
our system performs the best in warm caches. In cold caches, RDF-3X outperforms our system by an average factor of about 1.4,
while in warm caches, our system performs better than RDF-3X by an average factor of about 1.2. The main reason for the slowness
of our system in cold caches is that our system takes both querying and incremental update into consideration and hash-based
string-ID mapping strategy is adopted. The mapped IDs uniformly distribute in the range from 1 to 23!-1. However, in the
sequential strategy, the IDs will be in the range from 1 to number of different strings. The big range of hash-based string-ID mapping
influences the compression efficiency of binary tuples because the compression scheme of binary tuples is based on difference
values between adjacent binary tuples. Our system performing well in warm caches benefits from our well-designed query
execution engine. For MonetDB and PostgreSQL, our system achieves much higher efficiency than the two systems. Our system
outperforms PostgreSQL by an average factor of 11.8, sometimes by more than 47.1 in cold caches and an average factor of 2.9,
sometimes by more than 12.2 in warm caches. Differently from performance reported in [25], MonetDB performs the worst
because we have included the time for converting the string representation of atoms in the SPARQL query into their ID
representation. In our experiment, MonetDB consumes much of the time for this conversion so that the conversion has dominated
the query time. For this dataset, MonetDB takes about 8 s to convert a string into its ID representation in cold caches, and about
0.22 s in warm caches. While for other three systems, they only takes a little time for the conversion compared with the execution
time of the operator tree. Thus executing the operator tree dominates the query time in the three other systems. The reason for
slow conversion from string to ID is caused by the index strategy of MonetDB. MonetDB creates and maintains indices relying on its
own decision [38]. If we eliminate the time for conversion, AWETO, RDF-3X, MonetDB and PostgreSQL achieves geometric means of
0.404, 0.262, 2.158 and 5.106 respectively for cold caches and 0.060, 0.074, 0.099 and 0.150 for warm caches. (Our system and

Table 4

Incremental insertion time (in seconds) for string-ID mapping (YAGO2).
Knowledge base size Incremental update time Runtime ratio

AWETO RDF-3X

11 million 40.481 141.969 3.507
12 million 48.048 151.219 3.147
13 million 39.012 170.536 4371
14 million 53.358 183.288 3.435
15 million 50.271 188.293 3.746
16 million 53.110 203.237 3.827
17 million 52.023 189.881 3.650
18 million 53.513 200.136 3.740
19 million 55.553 194.822 3.507
20 million 55.215 197.927 3.585

Average 50.058 182.131 3.638
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Table 5

Incremental insertion time (in seconds) for string-ID mapping (LUBM).
Knowledge base size Incremental update time Runtime ratio

AWETO RDF-3X

32 million 116.963 509.112 4353
34 million 116.852 527.611 4.515
36 million 104.073 526.203 5.056
38 million 104.944 536.388 5111
40 million 106.161 535.824 5.047
42 million 95.473 531.897 5.571
44 million 103.760 527.151 5.080
46 million 101.237 532.368 5.259
48 million 103.767 528.203 5.090
50 million 108.775 514.674 4.732
Average 106.201 526.943 4.962

RDF-3X consumes less than 1 millisecond to do the string-to-ID conversion in warm caches.) In our experiments, for the above four
systems, we do not consider the time for converting the ID representation of atoms in the query results into their string
representation because these systems all convert the query results by B + trees and it is not related to the query execution engine.
For the commercial system OWLIM-SE, because it is not open source and we cannot get the implementation details of OWLIM-SE,
we only show the experimental results and the time for query results conversion is not excluded.

For the second experiment, we used the LUBM [39] dataset. The Lehigh University Benchmark (LUBM) consists of a university
domain ontology with synthetic data. We generated a dataset which consists of 500 universities by the UBA 1.7 data generator
with index = 0 and seed = 0. The dataset contains totally 16,439,335 different strings and 66,751,196 different triples. Then, we
use the Raptor RDF parser utility [40] to convert the triples to N3 format. Because LUBM is a synthetic dataset, the triple order in it
has fixed and regular pattern, which is not like real datasets. When generating the N3 file for the dataset, we disorganized the
triple order in the dataset to make it more natural. For test queries, we selected seven representative queries from the 14 test
queries provided by LUBM dataset. Because the tested RDF storage systems do not support reasoning, we slightly modified the
queries. All the queries are shown in Appendix A.2.

The experimental results for LUBM are shown in Table 3. RDF-3X storage system achieves the best performance and our
system is the runner-up. Compared with RDF-3X, RDF-3X outperforms our system by an average factor of about 1.7 in cold caches
and about 1.5 in warm caches. For PostgreSQL, our system outperforms PostgreSQL by an average factor of 7.7, sometimes by
more than 49 in cold caches and an average factor of 4, sometimes by more than 78 in warm caches. For MonetDB, the same
problem appears. MonetDB takes about 12 s to convert a string into its ID representation in cold caches, and about 0.3 s in warm
caches in LUBM dataset. If we eliminate the time for the string-to-ID conversion, AWETO, RDF-3X, MonetDB and PostgreSQL
achieves geometric means of 0.265, 0.145, 3.404 and 2.400 respectively for cold caches and 0.038, 0.025, 0.361, 0.096 for warm
caches.

6.3. Incremental update evaluation

The performance of incremental update is also an important factor for RDF storage systems. In this section, we present the
performance of incremental update. To test the incremental update performance of AWETO systematically, we test both the
incremental insertion and deletion efficiency. In each evaluation, we divide it into two parts, which evaluates the performance of
string-ID mapping and the triple index, respectively.

Table 6

Incremental insertion time (in seconds) for triple index (YAGO2).
Knowledge base size Incremental update time Runtime ratio

AWETO RDF-3X

11 million 47.441 112.486 2.371
12 million 45.033 114.144 2.535
13 million 49.190 117.999 2.399
14 million 51.119 139.517 2.729
15 million 50.159 143.653 2.864
16 million 51.053 150.152 2.941
17 million 53.217 162.221 3.048
18 million 52.731 170.572 3.235
19 million 54.365 195.359 3.593
20 million 57.235 209.920 3.668

Average 51.154 151.602 2.964
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Table 7

Incremental insertion time (in seconds) for triple index (LUBM).
Knowledge base size Incremental update time Runtime ratio

AWETO RDF-3X

32 million 130.797 378.559 2.894
34 million 171.933 476.523 2.772
36 million 273.941 693.151 2.530
38 million 328.183 912.901 2.782
40 million 391.176 969.036 2477
42 million 435.164 987.772 2.270
44 million 462.275 1099.538 2379
46 million 488.471 1165.601 2.386
48 million 510.270 1169.956 2.293
50 million 530.156 1278.030 2411
Average 372.237 913.107 2453

For all the systems, we take the N3 file as input. Our system has full ability to accomplish incremental update. For RDF-3X
system, although the authors have implemented incremental update in their system, it cannot work well according to our
experiment. The knowledge base after performing incremental update cannot be used for both querying and incremental update
again. Furthermore, our system is implemented in Java and takes Tokyo Cabinet [21] as the B+ tree implementation. RDF-3X is
written in C++ and uses their own B+ tree implementation. To make a fair comparison, we implemented the basic idea of
incremental update procedure of RDF-3X in Java and used Tokyo Cabinet as well and tried our best to make the code the most
efficient. In our RDF-3X implementation, we reduced the number of triple indices from fifteen in the original RDF-3X
implementation, to four in our implementation. This makes RDF-3X have the same number of indices with our system.

For MonetDB and PostgreSQL, we found the incremental update operation is much slower than that of our system and RDF-3X.
For MonetDB, due to its slow querying time on string-to-ID mapping reported in Section 6.2, incremental update for MonetDB is a
disaster. We tested the performance of incremental insertion using YAGO2 dataset with initial size 5 million triples and
incremental size only 1000 triples. It takes 121.814 s to incrementally insert the strings in the triples which concludes the rate of
incremental insertion of String-ID mapping for MonetDB is 8.21 triples/s. For PostgreSQL, only two small incremental sizes were
tested because PostgreSQL can only achieve an incremental insertion efficiency of several hundreds of triples per second. We
tested PostgreSQL on YAGO2 and LUBM respectively with 5 million triples for both initial and incremental sizes, and we got an
incremental insertion rate of 304 triples/s for YAGO2 and 695 triples/s for LUBM, which is also much slower than our system and
RDF-3X. For the above reason, we only report the incremental update performance of our system and RDF-3X for incremental
update with large amount of triples.

We assume the following scenario of incremental update. For YAGO2 dataset, the initial size of the knowledge base is set to
10 million triples. We execute 10 batches of incremental insertion, 1 million triples in each batch, thus after the incremental
insertion, the knowledge base will contain 20 million triples. The number of triples in LUBM is about two times than that in YAGO2.
Thus, for LUBM we set the initial knowledge base size to 30 million triples and repeat 10 batches of incremental insertion, 2 million
triples per batch. After the incremental insertion, the knowledge base will contain 50 million triples in total. For incremental
deletion, the initial knowledge base size is set to 30 million triples for YAGO2 and 50 million triples for LUBM and we delete
1 million triples per batch for YAGO2, and 2 million triples for LUBM.

The experimental results of incremental insertion of our system and RDF-3X are shown in Tables 4, 5, 6, and 7. The column of
“knowledge base size” indicates the number of triples in the knowledge base after the incremental update. The incremental update
time is measured in seconds. The last columns in the tables show the runtime ratio which is defined as the quotient of the RDF-3X's
runtime and AWETO's runtime. For both the string-ID mapping and triple index, our system achieves the best incremental

Table 8

Incremental deletion time (in seconds) for string-ID mapping (YAGO2).
Knowledge base size Incremental update time Runtime ratio

AWETO RDF-3X

19 million 27.245 126.003 4.625
18 million 25.599 125.543 4.904
17 million 25.576 124.011 4,849
16 million 25.615 122.932 4.799
15 million 26.326 120.364 4.572
14 million 26.023 124.551 4.786
13 million 25.771 123.703 4.800
12 million 26.085 122.775 4.707
11 million 25.946 119.397 4.602
10 million 25.752 113.614 4412

Average 25.994 122.289 4.705
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Table 9

Incremental deletion time (in seconds) for string-ID mapping (LUBM).
Knowledge base size Incremental update time Runtime ratio

AWETO RDF-3X

48 million 59.088 473.220 8.009
46 million 56.816 480.841 8.463
44 million 57.304 481.777 8.407
42 million 56.687 475.629 8.390
40 million 56.548 479.174 8474
38 million 57.265 480.562 8.392
36 million 55.949 478.778 8.557
34 million 56.426 483.762 8.573
32 million 55.227 478.327 8.661
30 million 56.080 481.679 8.589
Average 56.739 479.375 8.449

insertion efficiency and outperforms RDF-3X a lot with both of the two datasets. For string-ID mapping, our system outperforms
RDF-3X by an average factor of 3.638/4.962 by adopting our hash-based String-ID mapping approach using YAGO2/LUBM dataset.
Also, our system outperforms RDF-3X by a factor of 2.964/2.453 by adopting our triple index using YAGO2/LUBM. The experimental
results of incremental deletion are shown in Tables 8, 9, 10, and 11, which also conclude both of our hash-based String-ID mapping
approach and the triple index are optimized for incremental update and more time-efficient than RDF-3X.

The experimental results of incremental insertion of our system and OWLIM-SE are shown in Tables 12 and 13. Our system
outperforms OWLIM-SE by an average factor of 1.099 using YAGO2 dataset, however, OWLIM-SE gains better performance than
our system using LUBM dataset.

To conclude the above experiments, by adopting both the hash-based string-ID mapping approach and the two-tier triple
index, the incremental update efficiency can be improved substantially and our system achieves the highest incremental update
efficiency compared with the other three state-of-the-art open source RDF storage systems.

7. Related work

The storage and querying of RDF data have been studied for over ten years. Existing RDF storage systems can be divided into two
categories. The first category relies on an underlying DBMS system [30,41,31,42,43,29,34,25,44,9,45,17,46,18,47]. In these
approaches, triples are stored into a relational database. Since the lengths of atom strings are usually long, many systems convert
the triples with their string representation into their ID representation. Then the string-ID mapping table and ID-based triples are
stored into the database. Many of the systems use a sequential-based approach to map the strings, Oracle [17], 3store [18] and our
system adopt a hash-based ID mapping strategy. ID-based triples can be stored in the database in different ways. All the triples can
be stored in a “giant triple table” with subject, predicate, object as three columns of the table [30,31,29,34,45,46,18]. Alternatively,
property table [30,41,31] can be used which put some entities with their properties into property tables and put the left-over triples
in a triple table. What is more, along with the design of column-based store, vertical partitioning approach [25,44,9] has been
adopted in column-based stores. In this approach, triples with the same predicate are stored in the same table. This approach gains
good query performance when the number of total predicates is not too large. Bornea et al. [47] introduces an entity-oriented
approach which stores relationships associated with the same entity into one or more rows in the relational database.

The second category of RDF storage systems relies on their own index architectures [48,49,35,32,33,50-52,11,13,12,14,10,53]. Most
of the systems utilize B+ trees as their index structure and store the ID-based triples in different orders [32,33,50,51,11,13,12,14].
gStore [10] utilizes an in-memory vertex signature tree and an in-disk adjacency list to store and index all the triples. Hexastore [48]
proposes a sextuple index architecture, however the experiments were only done based on an in-memory prototype of Hexastore.

Table 10

Incremental deletion time (in seconds) for triple index (YAGO2).
Knowledge base size Incremental update time Runtime ratio

AWETO RDF-3X

19 million 41.354 62.016 1.500
18 million 41.300 60.359 1.461
17 million 39.767 57.199 1.438
16 million 39.712 55.753 1.404
15 million 39.384 54.603 1.386
14 million 38.548 52.616 1.365
13 million 37.488 50.038 1.335
12 million 37.006 49.359 1.334
11 million 36.951 46.079 1.247
10 million 35.459 45104 1.272

Average 38.697 53.313 1.378
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Table 11

Incremental deletion time (in seconds) for triple index (LUBM).
Knowledge base size Incremental update time Runtime ratio

AWETO RDF-3X

48 million 135.950 158.022 1.162
46 million 119.920 157.924 1317
44 million 116.775 153.728 1.316
42 million 118.790 159.973 1.347
40 million 114.620 144.872 1.264
38 million 111.399 141.615 1271
36 million 128.383 157.715 1.228
34 million 121.460 149.528 1.231
32 million 123.666 142.366 1.151
30 million 119.672 150.155 1.255
Average 121.064 151.590 1.252

GRIN [52] introduces an index format based on binary tree and hash tables by grouping information around selected “center” nodes,
however GRIN can only work well with small or medium datasets. BitMat [49,35] builds a compressed bit-matrix structure and applies
bit operations to execute queries which is optimized for low-selectivity queries. TripleBit [53] introduces a compact RDF storage
system, which uses a compressed triple matrix storage structure and two auxiliary indexing structures, ID-Chunk and ID-Predicate bit
matrix to support efficient querying of RDF data.

For incremental update, to the best of our knowledge, the SW-Store [9] establishes an overflow table and an RDF batch writer is
implemented to convert RDF triples in the overflow table into its main index (the vertical-partitioned tables). However, the update
efficiency was not reported. The RDF-3X engine [11,13,12,14] establishes differential index in memory and merges the differential
index with its main index (clustered B+ tree index) when the number of triples existing in memory exceed a threshold. The
performance of incremental update is reported in [13]. For gStore [10], because the vertex signature tree is in memory, its
maintenance overhead is low. The strategy to maintain the in-disk adjacency list is not reported in their paper.

8. Conclusion

In this paper, we propose a new RDF storage system AWETO which considers both the performance of querying and
incremental update. For string-ID mapping, we adopt a hash-based approach with in-memory conflict map which achieves high
performance in incremental update. For triple index, a new two-tier index approach is proposed which optimizes the incremental
update efficiency. For query execution, our highly-efficient operators achieve high efficiency on both reading data from triple
index and performing join operations. Experimental results show that our system is competitive in querying and outperforms the
other three state-of-the-art open source RDF storage systems when performing incremental update. With the fast growth of RDF
data, storing RDF data in a single node cannot satisfy the demand of high performance. For future work, we will investigate the
distributed RDF storage system based on AWETO, which partitions the RDF data into multiple nodes and performs querying and
incremental update in a parallel way.
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Table 12

Incremental insertion time (in seconds) comparison with OWLIM-SE (YAGO).
Knowledge base size Incremental update time Runtime ratio

AWETO OWLIM-SE

11 million 87.922 56.850 0.647
12 million 93.081 85.885 0.923
13 million 88.202 74.555 0.845
14 million 104.477 88.573 0.848
15 million 100.430 155.761 1.551
16 million 104.163 125.988 1.210
17 million 105.240 124.999 1.188
18 million 106.244 140.878 1.326
19 million 109.918 132.204 1.203
20 million 112.450 126.313 1.123

Average 101.213 111.201 1.099
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Table 13
Incremental insertion time (in seconds) comparison with OWLIM-SE (LUBM).

Knowledge base size Incremental update time Runtime ratio
AWETO OWLIM-Lite
32 million 247.760 292.449 1.180
34 million 288.785 304.703 1.055
36 million 378.014 348.900 0.923
38 million 433.127 415.202 0.959
40 million 497.337 416.696 0.838
42 million 530.637 470.561 0.887
44 million 566.035 487.803 0.862
46 million 589.708 499.811 0.848
48 million 614.037 565.809 0.921
50 million 638.931 475.256 0.744
Average 478.437 427.719 0.894

Appendix A. Queries for evaluation

A.l. YAGO2

Q1: select ?name ?state ?m1 ?m2 where {
?a <isCalled> ?name.
?a <type> <wordnet_actor_109765278>.
?a <livesIn> ?city.
?city <isLocatedIn> ?state.
?a <actedIn> ?m1.
?m1 <type> <wordnet_movie_106613686>.
?a <directed> ?m2.
?7m2 <type> <wordnet_movie_106613686>.
filter (?m1 !=?m2)}
Q2: select ?name ?b ?c where {
?a <isCalled> ?name.
?a <livesin> ?b.
?b <isLocatedIn> ?c.
?c <isLocatedIn> <United_States> }
Q3: select ?name ?m1 ?i1 ?m2 ?i2 where {
?a <isCalled> ?name.
?a <actedIn> ?m1.
?m1 <haslmdb> ?il.
?a <directed> ?m2.
?m2 <hasImdb> ?i2.
?a <isLocatedIn> ?b.
?b <isLocatedIn> <New_Jersey>}
Q4: select ?name ?city ?1 where {
?p <isCalled> ?name.
?p <type> <wordnet_actor_109765278>.
?p <wasBornIn> ?city.
?city <isLocatedIn> ?1 }
Q5: select distinct ?namel ?name2 where {
?p1 <hasFamilyName> ?name1l.
?p2 <hasFamilyName> ?name2.
?p1 <type> <wordnet_scientist_110560637>.
?7p2 <type> <wordnet_scientist_110560637>.
?p1 <hasWonPrize> ?award.
?p2 <hasWonPrize> ?award.
?p1 <wasBornln> ?city.
?p2 <wasBornIn> ?city.
filter (?p1 !=7p2) }
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Q6: select ?p ?GivenName ?FamilyName ?GivenName2 ?FamilyName2 where {
?p <hasGivenName> ?GivenName.
?p <hasFamilyName> ?FamilyName.
?p <wasBornln> ?city.
?p <type> <wordnet_scientist_110560637>.
?city <isLocatedIn> <Switzerland>.
?p <hasAcademicAdvisor> ?a.
?a <isCitizenOf> <Germany>.
?a <hasGivenName> ?GivenName?2.
?a <hasFamilyName> ?FamilyName?2 }
Q7: select ?g1 ?f1 where {
?a <hasGivenName> ?g1.
?a <hasFamilyName> ?f1.
?a <wasBornIn> ?c.
?c <isLocatedIn> <Ohio>.
?a <livesIn> ?b.
?b <isLocatedIn> <Utah>}

A2. LUBM

Q1: select ?X where {
?X <type> <GraduateStudent>.
?X <takesCourse>
<http://www.Department0.University0.edu/GraduateCourse0>
}
Q2: select ?X where {
?X <type> <Publication>.
?X <publicationAuthor>
<http://www.Department0.University0.edu/AssistantProfessor0>
}
Q3: select ?X ?Y1 ?Y2 ?Y3 where {
?X <type> <Full Professor>.
?X <worksFor> <http://www.Department0.University0.edu>.
?X <name> ?Y1.
?X <emailAddress> ?Y2.
?X <telephone> ?Y3 }
Q4: select ?X where {
?X <type> <UndergraduateStudent> }
Q5: select ?X ?Y where {
?X <type> <UndergraduateStudent>,
?Y <type> <Course>.
?X <takesCourse> ?Y.
<http://www.Department0.University0.edu/AssociateProfessor0> <teacherOf> ?Y }
Q6: select ?X ?Y ?Z where {
?X <type> <UndergraduateStudent>.
?Y <type> <Department>.
?X <memberOf> ?Y.
?Y <subOrganizationOf> <http://www.University0.edu>.
?X <emailAddress> ?Z }
Q7: select ?X ?Y where {
?X <type> <FullProfessor>.
?Y <type> <Department>.
?X <worksFor>?Y.
?Y <subOrganizationOf> <http://www.University0.edu>

}



74

X. Pu et al. / Data & Knowledge Engineering 89 (2014) 55-75

References

[26]
[27]

(28]
[29]

[31]

[42]

[43]
[44]

[45]
[46]
[47]

(48]
[49]

[50]
[51]
[52]
(53]

W3C: Resource Description Framework (RDF), http://www.w3.org/RDF 2012.

Wikipedia, http://www.wikipedia.org 2012.

S. Auer, C. Bizer, G. Kobilarov, ]. Lehmann, R. Cyganiak, Z.G. Ives, DBpedia: A Nucleus for a Web of Open Data, ISWC/ASWC, 2007. 722-735.

WordNet, http://wordnet.princeton.edu 2012.

GeoNames, http://www.geonames.org 2012.

F.M. Suchanek, G. Kasneci, G. Weikum, YAGO: A Core of Semantic Knowledge, 2007. 697-706 www.

YAGO2, http://www.mpi-inf.mpg.de/yago-naga/yago 2012.

Linking open data, http://esw.w3.org/SweolG/TaskForces/CommunityProjects/LinkingOpenData 2012.

D.J. Abadi, A. Marcus, S. Madden, K. Hollenbach, SW-Store: a vertically partitioned DBMS for semantic web data management, VLDB J. 18 (2009) 385-406.
L. Zou, ]. Mo, L. C., M.T. Ozsu, D. Zhao, gStore: answering SPARQL queries via subgraph matching, PVLDB 4 (2011) 482-493.

T. Neumann, G. Weikum, RDF-3X: a RISC-style engine for RDF, PVLDB 1 (2008) 647-659.

T. Neumann, G. Weikum, Scalable join processing on very large RDF graphs, SIGMOD Conference, 2009, pp. 627-640.

T. Neumann, G. Weikum, The RDF-3X engine for scalable management of RDF data, VLDB J. 19 (2010) 91-113.

T. Neumann, G. Weikum, x-RDF-3X: fast querying, high update rates, and consistency for RDF databases, PVLDB 3 (2010) 256-263.

X. Py, J. Wang, P. Luo, M. Wang, AWETO: efficient incremental update and querying in RDF storage system, CIKM, 2011, pp. 2445-2448.

W3C: SPARQL query language for RDF, http://www.w3.org/TR/rdf-sparql-query 2012.

S. Das, E.I. Chong, Z. Wu, M. Annamalai, ]. Srinivasan, A scalable scheme for bulk loading large RDF graphs into oracle, ICDE, 2008, pp. 1297-1306.

S. Harris, N. Gibbins, 3store: efficient bulk RDF storage, PSSS, 2003.

A hash function for hash table lookup, http://burtleburtle.net/bob/hash/doobs.html 2012.

B.H. Bloom, Space/time trade-offs in hash coding with allowable errors, Commun. ACM 13 (1970) 422-426.

Tokyo cabinet: a modern implementation of DBM, http://fallabs.com/tokyocabinet 2012.

UniProt RDF, http://dev.isb-sib.ch/projects/uniprot-rdf 2012.

T. Westmann, D. Kossmann, S. Helmer, G. Moerkotte, The implementation and performance of compressed databases, SIGMOD Rec. 29 (2000) 55-67.
H.E. Williams, J. Zobel, Compressing integers for fast file access, Comput. J. 42 (1999) 193-201.

D.J. Abadi, A. Marcus, S. Madden, K.J. Hollenbach, Scalable semantic web data management using vertical partitioning, VLDB, 2007, pp. 411-422.
MonetDB, http://monetdb.cwi.nl 2012.

M. Stonebraker, D.J. Abadji, A. Batkin, X. Chen, M. Cherniack, M. Ferreira, E. Lau, A. Lin, S. Madden, E.J. O'Neil, P.E. O'Neil, A. Rasin, N. Tran, S.B. Zdonik, C-store:
a column-oriented DBMS, VLDB, 2005, pp. 553-564.

PostgreSQL: the world's most advanced open source database, http://www.postgresql.org 2012.

J. Broekstra, A. Kampman, F. van Harmelen, Sesame: an architecture for storing and querying RDF data and schema information, Spinning the Semantic Web,
2003, pp. 197-222.

K. Wilkinson, C. Sayers, H.A. Kuno, D. Reynolds, Efficient RDF storage and retrieval in Jena2, SWDB, 2003, pp. 131-150.

Jena semantic web framework, http://jena.sourceforge.net 2012.

A. Harth, J. Umbrich, A. Hogan, S. Decker, YARS2: A Federated Repository for Querying Graph Structured Data from the Web, ISWC/ASWC, 2007. 211-224.
YARS: Yet Another RDF Store, http://sw.deri.org/2004/06/yars 2012.

OpenRDF, http://www.openrdf.org 2012.

M. Atre, V. Chaoji, MJ. Zaki, ].A. Hendler, Matrix “bit” loaded: a scalable lightweight join query processor for RDF data, Proceedings of the 19th International
Conference on World Wide Web, WWW '10, ACM, New York, NY, USA, 2010, pp. 41-50.

OWLIM, http://www.ontotext.com/owlim 2013.

Notation3 (N3): a readable RDF syntax, http://www.w3.org/TeamSubmission/n3 2012.

MonetDB documentation 3.1.8: indexes, http://monetdb.cwi.nl/SQL/Documentation/Indexes.html 2012.

Y. Guo, Z. Pan, ]. Heflin, LUBM: a benchmark for OWL knowledge base systems, J. Web Sem. 3 (2005) 158-182.

Raptor RDF parser utility, http://librdf.org/raptor/rapper.html 2012.

K. Wilkinson, K. Wilkinson, Jena Property Table Implementation, SSWS2006.

S. Alexaki, V. Christophides, G. Karvounarakis, D. Plexousakis, K. Tolle, The ICS-FORTH RDF Suite: Managing Voluminous RDF Description Bases,
SemWeb2001.

The ICS-FORTH RDF suite, http://athena.ics.forth.gr:9090/RDF 2012.

L. Sidirourgos, R. Goncalves, M.L. Kersten, N. Nes, S. Manegold, Column-store support for RDF data management: not all swans are white, PVLDB 1 (2008)
1553-1563.

E.IL Chong, S. Das, G. Eadon, J. Srinivasan, An efficient SQL-based RDF querying scheme, VLDB, 2005, pp. 1216-1227.

L. Ma, C. Wang, J. Lu, F. Cao, Y. Pan, Y. Yu, Effective and efficient semantic web data management over DB2, SIGMOD Conference, 2008, pp. 1183-1194.
M.A. Bornea, J. Dolby, A. Kementsietsidis, K. Srinivas, P. Dantressangle, O. Udrea, B. Bhattacharjee, Building an efficient RDF store over a relational database,
SIGMOD Conference, 2013, pp. 121-132.

C. Weiss, P. Karras, A. Bernstein, Hexastore: sextuple indexing for semantic web data management, PVLDB 1 (2008) 1008-1019.

M. Atre, ]. Srinivasan, J.A. Hendler, BitMat: a main-memory bit matrix of RDF triples for conjunctive triple pattern queries, International Semantic Web
Conference, 2008, (Posters & Demos).

G.H.L. Fletcher, P.W. Beck, Scalable indexing of RDF graphs for efficient join processing, CIKM, 2009, pp. 1513-1516.

B. Liu, B. Hu, HPRD: a high performance RDF database, NPC, 2007, pp. 364-374.

0. Udrea, A. Pugliese, V.S. Subrahmanian, GRIN: a graph based RDF index, AAAI, 2007, pp. 1465-1470.

P. Yuan, P. Liu, B. Wu, H. Jin, W. Zhang, L. Liu, TripleBit: a fast and compact system for large scale RDF data, PVLDB 6 (2013) 517-528.

Xu Pu received his bachelor's degree at Beijing University of Posts and Telecommunications. Now he is a Master's student at Tsinghua
University. His main research topics are RDF data indexing and querying, and data mining.


http://www.w3.org/RDF
http://www.wikipedia.org
http://refhub.elsevier.com/S0169-023X(13)00130-4/rf0085
http://wordnet.princeton.edu
http://www.geonames.org
http://refhub.elsevier.com/S0169-023X(13)00130-4/rf0100
http://www.mpi-inf.mpg.de/yago-naga/yago
http://esw.w3.org/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
http://refhub.elsevier.com/S0169-023X(13)00130-4/rf0005
http://refhub.elsevier.com/S0169-023X(13)00130-4/rf0115
http://refhub.elsevier.com/S0169-023X(13)00130-4/rf0010
http://refhub.elsevier.com/S0169-023X(13)00130-4/rf0120
http://refhub.elsevier.com/S0169-023X(13)00130-4/rf0015
http://refhub.elsevier.com/S0169-023X(13)00130-4/rf0125
http://refhub.elsevier.com/S0169-023X(13)00130-4/rf0130
http://www.w3.org/TR/rdf-sparql-query
http://refhub.elsevier.com/S0169-023X(13)00130-4/rf0140
http://refhub.elsevier.com/S0169-023X(13)00130-4/rf0020
http://burtleburtle.net/bob/hash/doobs.html
http://refhub.elsevier.com/S0169-023X(13)00130-4/rf0025
http://fallabs.com/tokyocabinet
http://dev.isb-sib.ch/projects/uniprot-rdf
http://refhub.elsevier.com/S0169-023X(13)00130-4/rf0030
http://refhub.elsevier.com/S0169-023X(13)00130-4/rf0035
http://refhub.elsevier.com/S0169-023X(13)00130-4/rf0160
http://monetdb.cwi.nl
http://refhub.elsevier.com/S0169-023X(13)00130-4/rf0170
http://refhub.elsevier.com/S0169-023X(13)00130-4/rf0170
http://www.postgresql.org
http://refhub.elsevier.com/S0169-023X(13)00130-4/rf0180
http://refhub.elsevier.com/S0169-023X(13)00130-4/rf0180
http://refhub.elsevier.com/S0169-023X(13)00130-4/rf0185
http://jena.sourceforge.net
http://refhub.elsevier.com/S0169-023X(13)00130-4/rf0195
http://sw.deri.org/2004/06/yars
http://www.openrdf.org
http://refhub.elsevier.com/S0169-023X(13)00130-4/rf0210
http://refhub.elsevier.com/S0169-023X(13)00130-4/rf0210
http://www.ontotext.com/owlim
http://www.w3.org/TeamSubmission/n3
http://monetdb.cwi.nl/SQL/Documentation/Indexes.html
http://refhub.elsevier.com/S0169-023X(13)00130-4/rf0045
http://librdf.org/raptor/rapper.html
http://refhub.elsevier.com/S0169-023X(13)00130-4/rf0050
http://refhub.elsevier.com/S0169-023X(13)00130-4/rf0055
http://refhub.elsevier.com/S0169-023X(13)00130-4/rf0055
http://athena.ics.forth.gr:9090/RDF
http://refhub.elsevier.com/S0169-023X(13)00130-4/rf0060
http://refhub.elsevier.com/S0169-023X(13)00130-4/rf0060
http://refhub.elsevier.com/S0169-023X(13)00130-4/rf0240
http://refhub.elsevier.com/S0169-023X(13)00130-4/rf0245
http://refhub.elsevier.com/S0169-023X(13)00130-4/rf0250
http://refhub.elsevier.com/S0169-023X(13)00130-4/rf0250
http://refhub.elsevier.com/S0169-023X(13)00130-4/rf0065
http://refhub.elsevier.com/S0169-023X(13)00130-4/rf0255
http://refhub.elsevier.com/S0169-023X(13)00130-4/rf0255
http://refhub.elsevier.com/S0169-023X(13)00130-4/rf0260
http://refhub.elsevier.com/S0169-023X(13)00130-4/rf0265
http://refhub.elsevier.com/S0169-023X(13)00130-4/rf0270
http://refhub.elsevier.com/S0169-023X(13)00130-4/rf0070

X. Pu et al. / Data & Knowledge Engineering 89 (2014) 55-75 75

Jianyong Wang is currently a professor in the Department of Computer Science and Technology, Tsinghua University, Beijing, China.
He received his PhD degree in Computer Science in 1999 from the Institute of Computing Technology, Chinese Academy of Sciences.
He was an assistant professor at Peking University, and visited Simon Fraser University, University of Illinois at Urbana-Champaign,
and University of Minnesota at Twin Cities before joining Tsinghua University in December 2004. His research interests mainly
include data mining and Web information management. He has co-authored over 60 papers in some leading international
conferences and some top international journals. He is serving or ever served as a PC member for some leading international
conferences, such as SIGKDD, VLDB, ICDE, WWW, and an associate editor of IEEE TKDE. He is a senior member of the IEEE, a member
of the ACM, a recipient of the 2009 and 2010 HP Labs Innovation Research award, the 2009 Okawa Foundation Research Grant
(Japan), WWW'08 best posters award, and the Year 2007 Program for New Century Excellent Talents in University, State Education
Ministry of China.

Zhenhua Song received his bachelor's degree at Beihang University. Now he is a Master's student at Tsinghua University. His main
research topics are RDF data storage and approximate querying, and data mining.

Ping Luo received his PhD degree in Computer Science from the Institute of Computing Technology, Chinese Academy of Sciences. He
is currently an associate professor in the Institute of Computing Technology, CAS. He has published several papers in some prestigious
refereed journals and conference proceedings, such as the IEEE Transactions on Information Theory, IEEE Transactions on Knowledge
and Data Engineering, Journal of Parallel and Distributed Computing, ACM SIGKDD, ACM CIKM, and IJCAL His research interests
include knowledge discovery and machine learning. He is the recipient of the Doctoral Dissertation Award, China Computer
Federation, 2009. He is a member of the IEEE Computer Society and the ACM.

Dr. Min Wang is a Distinguished Technologist and the Director of HP Labs China. Prior to joining HP, Dr. Wang led a 10-year career at
IBM's Thomas J. Watson Research Center, where she pursued her research interests in database systems and information
management.

Dr. Wang has published broadly in the areas of database systems and information management. In 2009, she received the ACM
SIGMOD 2009 Test of Time Award for her SIGMOD 1999 paper.

She received her Ph.D. degree in Computer Science from Duke University and the B.S. and M.S. degrees, both in Computer Science,
from Tsinghua University, Beijing, China.


Unlabelled image
Unlabelled image

	Efficient incremental update and querying in AWETO RDF storage system
	1. Introduction
	2. Preliminaries
	3. String-ID mapping approach
	3.1. String-ID mapping in initial bulk load
	3.2. String-ID mapping in incremental update

	4. Triple index
	4.1. Overview of triple index
	4.2. Incremental update of triple index

	5. Query execution
	6. Experimental evaluation
	6.1. General setup
	6.2. Query evaluation
	6.3. Incremental update evaluation

	7. Related work
	8. Conclusion
	Acknowledgment
	Appendix A. Queries for evaluation
	A.1. YAGO2
	A.2. LUBM

	References


